

# **Bilirubin-Direct**

# DC-Test (5 + 1 - Reagent)



| Cat.No  | Package Size                  |
|---------|-------------------------------|
| 113 116 | 7x10 mL / 2 x 8 mL            |
| 113 100 | 5 x 20 mL / 2 x 10 mL         |
| 113 102 | Hit-I 4 x 50 mL / 2 x 20 mL   |
| 113 103 | Hit-II 4 x 100 mL / 4 x 20 mL |
| 113 106 | AU 4 x 70 mL / 3 x 20 mL      |
| 113 125 | LW 5 x 20 mL / 2 x 10 mL      |

#### **METHOD / TESTPRINCIPLE**

Photometric test with stabilized 2,4-Dichlorophenyldiazoniumsalt ("DC"): Direct Bilirubin reacts with the DC-derivative in acid solution to form a red diazo dye.

#### **REAGENT COMPOSITION**

| R1: | EDTA-Na <sub>2</sub>            | 0,07 mmol/l |
|-----|---------------------------------|-------------|
|     | NaCl                            | 6,6 g/l     |
|     | Sulfaminic Acid                 | 70 mmol/l   |
| R2: | 2,4-Dichlorphenyl-Diazoniumsalt | 0,09 mmol/l |
|     | HCI                             | 130 mmol/l  |
|     | EDTA-Na <sub>2</sub>            | 0,02 mmol/l |

Calibrator(Cal): Use Greiner Multicalibrator

#### **PRECAUTIONS**

- For in vitro diagnostic use only.
- Avoid direct exposure to light.
- Possible interferences with protein on surfaces of analyzer tubes can be avoided by rinsing with 0.1 N NaOH solution.
- Avoid contamination by using clean laboratory material (pipette, plastic vial for analyzers)

#### **STABILITY OF REAGENTS**

When stored at 2-8° C and protected from light, the reagents are stable up to the expiry date stated on the labels.

# PREPARATION AND STABILITY OF WORKING REAGENTS

R1 and R2 are ready for use Stability after opening

3 months at 2 – 8°C

4 weeks at room temp

#### **SAMPLES**

Serum free of hemolysis. Heparin or EDTA plasma.

(Bilirubine is very light sensitive : Protect sample

material from light!)

#### REFERENCE VALUES

|                     | [mg/dL] | [µmol/L] |  |
|---------------------|---------|----------|--|
| Children and Adults | < 0.2   | < 3,4    |  |

Note: It is recommended for each laboratory to establish and maintain its own reference values. The given data are only an indication.

#### **PROCEDURE**

This reagent can be used manually (see method below) and on most analyzers. Applications are available on request.

Wavelength : 546 nm (540-560)

Temperature : 37°C

Cuvette: 1 cm light path Read against reagent blank (RB)

|                                                         | Reagent Blank                  | Sample/<br>Standard |  |
|---------------------------------------------------------|--------------------------------|---------------------|--|
| Sample/Standard                                         | -                              | 100 μL              |  |
| Dist.Water                                              | 100 μL                         | = '                 |  |
| Reagent 1                                               | 1000 µL                        | 1000 μL             |  |
| Mix, incubate for 3 - 5 min                             | read absorbance A <sub>1</sub> | then add            |  |
| Reagent 2                                               | 200 µl                         | 200 μL              |  |
| Mix, incubate for exactly 5 min and read A <sub>2</sub> |                                |                     |  |

 $\Delta A = [(A_2 - A_1) \text{ Sample/Calibrator}] - [(A_2 - A_1) \text{ RB}]$ 

#### **CALCULATION**

With calibrator:

Bilirubin Direct 
$$[mg/dI] = \frac{\Delta A \ sample}{\Delta A \ calibrator} \times C \ [mg/dI]$$

C = Concentration Calibrator

#### **CALIBRATORS & CONTROLS**

For the calibration of automated analyzers Greiner Multicalibrator is recommended, for quality control use Greiner normal and abnormal control, Unitrol I and Unitrol II, for direct bilirubin the special bilirubin control.

01/2013 Page 1/2

### PERFORMANCE DATA (37°C)

#### - Analytical range

The reagent is linear up to 10 mg/dL.

#### - Detection limit

The detection limit is equal to 0,1 mg/dL

#### - Precision

Within-run reproducibility

N = 20

|          | Mean  | SD    | CV   |
|----------|-------|-------|------|
|          | mg/dL | mg/dL | %    |
| Sample 1 | 0.36  | 0.01  | 3.12 |
| Sample 2 | 0.76  | 0.01  | 1.46 |
| Sample 3 | 2.07  | 0.03  | 1.30 |

## Between-run reproducibility

N = 20

|          | Mean  | SD    | CV   |
|----------|-------|-------|------|
|          | mg/dL | mg/dL | %    |
| Sample 1 | 0.35  | 0.01  | 3.34 |
| Sample 2 | 0.75  | 0.01  | 1.00 |
| Sample 3 | 2.13  | 0.02  | 0.71 |

#### - Correlation

A comparative study has been performed between the Greiner method and another commercial reagent on 85 human serum samples. The parameters of linear regression are as follows:

Y = 0.95 x - 0.04 mg/dl R = 0.995

## **INTERFERENCES**

Interferences are found according to literature.

For the manual method (with sample blanc) and the automated method (two point method) interferences are eliminated

#### **BIBLIOGRAPHY**

- Thomas L ed. Clinical Laboratory Diagnostics.
   1st ed. Frankfurt: TH-Books Verlagsgesellschaft, 1998. p. 192-202.
- Tolman KG, Rej R. Liver function. In: Burtis CA, Ashwood ER, editors. Tietz Textbook of Clinical Chemistry. 3<sup>rd</sup> ed. Philadelphia: W.B Saunders Company; 1999. p. 1125-77.
- 3. Rand RN, di Pasqua A. A new diazo method for the determination of bilirubin. Clin Chem 1962:6:570-8.

#### **SYMBOLS USED**

For *in vitro* diagnostic medical use

LOT

Batch Code

Use by

Temperature limitation

01/2013 Page 2/2