Cat.No	Package Size
102080	$5 \times 10 \mathrm{ml} \mathrm{R1/50} \mathrm{ml}$ BufferR2 $/$
	50 ml Buffer-Tartrate R3/
2 ml Stabilizer R4	

METHOD / REACTION PRINCIPLE:

α-Naphthylphosphate is hydrolysed by ACP to phosphate and α-naphthol, which is converted with FRTR-salt into an azo dye. The increase of absorbance at 405 nm is proportional to the total ACP activity in the sample. The prostatic acid phosphatase (PACP) can be blocked by tartrate and can be determined indirectly (through the non-prostatic ACP) by calculation of the activity difference.

$$
\begin{aligned}
& \alpha-\text { Naphthylphosphate }+\mathrm{H}_{2} \mathrm{O} \xrightarrow[\text { ACP }]{\text { phosphate }}+1 \text {-naphthol } \\
& \alpha-\text { Naphthol }+ \text { FRTR-salt } \longrightarrow \text { Azo dye }
\end{aligned}
$$

REAGENTS: (Concentrations in the test)
R1: 1-Naphthyl phosphate $10 \mathrm{mmol} / \mathrm{l}$

Fast Red TR-salt
(4-chloro-2-methylphenyl diazonium salt)
R2: Citrate buffer pH 5.2
R3: Citrate buffer pH 5.2
Tartrate $1.5 \mathrm{mmol} / \mathrm{l}$

R4 : Stabilizer = Acetic acid
$0.8 \mathrm{~mol} / \mathrm{l}$
The sealed reagents are stable up to the indicated expiry date if stored at $2^{\circ}-8^{\circ} \mathrm{C}$.

PREPARATION AND STABILITY OF WORKING REAGENTS

R2 and R3 are ready for use

Reagent A (determination of Total ACP):
Dissolve the contents of R1 (substrate) in 10 ml of buffer solution R2.
Mark label with „A".
Reagent B (determination of Prostatic ACP):
Dissolve the contents of R1 (substrate) in 10 ml of tartrate solution R3. Mark label with „B".

Stability of Working reagents

3 days at $2^{\circ}-8^{\circ} \mathrm{C}$
1 day at $18^{\circ}-25^{\circ} \mathrm{C}$

SAMPLES :

Serum, Citrate plasma
(Avoid hemolysis, do not use heparine or oxalate plasma)
Use immediately or stabilize :
Add 1 drop of 0.1% acetic acid to 1 ml of serum:
$A C P$ is stable for 3 days at $2-8^{\circ} \mathrm{C}$.

NORMAL RANGES		
Total Acid Phosphatase		
Men		$\leq 4,7$ U/l
Women		$\leq 3,7$ U/l
Prostatic Acid Phosphatase		
		$\leq 1,6 \mathrm{U} / \mathrm{l}$
ASSAY PROCEDURE:		
Wavelength :	405 nm Hg	
Light path:	1 cm	
Temperature :	$37^{\circ} \mathrm{C}$	
Measurement:	against air (in	absorbance)

Pipette into cuvettes:		
Sample	(TACP)	B (NPACP)
Reagent A	$100 \mu \mathrm{l}$	$100 \mu \mathrm{l}$
Reagent B	$1000 \mu \mathrm{l}$	-

Mix, read absorbance A_{1} after 5 min and start stopwatch at same time. Read absorbance A_{2} exactly after 3 $\min =>$ Calculate $\Delta \mathrm{A} / \mathrm{min}$.

CALCULATION:

Calculate total acid phosphatase activity and prostatic acid phosphatase activity using following factors:

Total acid phosphatase $\quad T A C P(U / I)=\triangle A / m i n x 743$
Non-prost. acid phosph. NPACP $(U / I)=\Delta A / \min x 743$
Prost. acid phosph. \quad PACP (U/I) $=$ TACP - NPACP

Conversion factor
traditional units (U/I) into SI-units (μk kat/l):

$$
1 \mathrm{U} / \mathrm{I}=16.67 \times 10^{-3} \mu \mathrm{~kat} / \mathrm{l}
$$

CALIBRATORS AND CONTROLS

For the calibration of automated analyzers Greiner Multicalibrator is recommended, for quality control use Greiner normal and abnormal control, Unitrol I and Unitrol II.

LINEARITY:

If absorbance change exceeds 0.3 at $37^{\circ} \mathrm{C}$, or if the activity is higher than $74 \mathrm{U} / \mathrm{l}$, dilute 0.1 ml of sample with 0.2 ml phys. saline (0.9%) and repeat the assay using dilution. Multiply result by 3.

LITERATURE

1. Thomas L ed. Clinical Laboratory Diagnostics.
2. $1^{\text {st }}$ ed. Frankfurt: TH-Books Verlagsgesellschaft, 1988:147
3. Hillmann G. Z.Klin.Chem.Klin.Biochem.9, p.273.

SYMBOLS USED

For in vitro diagnostic medical use

Batch Code

Use by
1
Temperature limitation

